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Abstract. This document analyses a non-optimal algorithm for the Sampling-
Reconstruction Procedure of Gaussian realizations. The algorithm is based on
the clipping. It means that it knows just the zero crossings in the realization. To
finding out its effectiveness, it is compared with an optimal algorithm, which
considers some samples of the realization located at strategic points. The result
is that the non-optimal algorithm does not give a correct reconstruction. So it is
necessary to include a new parameter within this methodology to improve the
performance. However, the application has some disadvantages, mainly reflect-
ed in the reconstruction error. For all this, it is possible to conclude that the non-
optimal algorithms are just approximations to the optimal algorithms. The anal-
ysis is centered in the reconstruction of Markovian Gaussian realizations.
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1 Introduction

A fundamental problem in communication theory is to establish a statistical descrip-
tion that defines the reconstruction of the realizations that compose a random process
through the multitude of their samples. Throughout history there have been several
investigations to try to resolve it. Perhaps the most important work was done by A.
Balakrishnan [1]. But in recent years one methodology has been studied extensively
by lots of people, it is called conditional mean rule (cmr). This rule is capable of re-
constructing a random realization with the minimum error possible taking into ac-
count its main statistical characteristics. It gives to each random process its own opti-
mal reconstruction algorithm and optimal reconstruction error algorithm (see for
example [2-5]).

Despite having an optimal reconstruction algorithm, any realization of a random
process has different ways to be reconstructed. That is, it can use an alternative meth-
odology to the right methodology according to the characteristics of each process.
This parallel technique can (or not) have the same amount of statistical parameters
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than the optimal technique uses to make the reconstruction. Although these parame-
ters may not belong to the random process. Because of this, many times the recon-
struction is not adequate. For this reason, it is called non optimal reconstruction algo-
rithm. Even the conditional mean rule can be considered as non-optimal algorithm if
it does not consider the appropriate parameters. The purpose is to have a simpler
methodology in its development and implementation, considering the range of allow-
able error and the processing time.

In many cases, there is not enough information about the random process (or their
realizations) to reconstruct it, specifically the value of the samples. Then, it is neces-
sary to saturate the realization by a clipper converter. Getting a binary signal of the
realization, which gives as information the moments where it crosses by zero.

The research is focus on the creation and analysis of the Sampling-Reconstruction
Procedure (SRP) of Gaussian Markovian realizations having optimal and non-optimal
algorithms. The methodologies are based on sampling methods using the zero cross-
ings by clipping.

2 The Optimal Reconstruction Algorithm

The Sampling-Reconstruction Procedure using the optimal algorithm is performed by
the conditional mean rule. The mean idea of this methodology has been proposed in
[2]. Firstly, we consider a random process x(t) characterized by its multidimensional
probability functions wy, [x(t,), x(t5), ..., x(t,,)]. One realization of this process is
discretized in time instants T = {Ty, T,, ..., Ty }. Therefore, we form a set of samples
X, T = x(Ty), x(T,), ..., x(Ty), where the number of samples N and their times of
occurrence T are arbitrary. It means that the initial and central moment functions and
their probability densities are modified. Now they are conditional and depend on the
value of each sample x(T;), x(T,), ..., x(Ty).

In this way, the conditional mean function #i(t) = (x(t)|X,T) is used as recon-
struction function. The quality of the reconstruction is evaluated by the conditional
variance function &(t) = ([x(t) — M (¢t)]?|X,T) or reconstruction error function.
Both characteristics 7 (t) and (t) can be found on the basis of the conditional mul-
tidimensional probability density function wy,,(x(t)|X,T) of the given process.
With these parameters, it is possible to reconstruct a random realization and get the
quality of it. It is clear that one cannot know exactly the sampled realization, but with
this rule we obtain a statistical approach for each moment of time t. The rule also
provides the minimum estimation reconstruction error for random realizations with an
arbitrary probability density function. For all that, the conditional mean rule is called
optimal algorithm.

Considering that the realization to reconstruct is Gaussian, the conditional charac-
teristics are [6-7]:
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where m(t) and o2(t) are respectively the mathematical expectation and the variance
of the initial process x(t). K(-) is the covariance function, and a;; represents the ele-
ments of the inverse covariance matrix. Assuming that the process is stationary, we
consider m(t) = 0 and ¢2(¢t) = 1. This is the complete information about the process
or realization given. According the properties of a Gaussian process, just the recon-
struction function depends on the value of the samples; the reconstruction error func-
tion does not.

However, if we saturate the realization and apply the clipping operation, we have
only the zero crossings as information. These zero crossings are considered samples.
Under these conditions it is not possible to apply the conditional mean rule, because
the result is zero. So we need to modify the methodology. This is accomplished by
adding a sample between two zero crossings. With this proposal, we have the case
where the sample is located at the midway between two zero crossings. Its magnitude
is equal to the magnitude of the realization at this point.

Once we have the samples, it is possible to apply the condition mean rule for mak-
ing the reconstruction and get a different result to zero. Then, the reconstruction func-
tion and the reconstruction error function are obtained by (1) and (2) respectively.

3 The Non Optimal Reconstruction Algorithm

The Sampling-Reconstruction Procedure using the non-optimal algorithm is also per-
formed by the conditional mean rule. The difference consists in the samples that it
uses. Although in this methodology is also used an additional sample between two
zero crossing, the value of this sample is not considered part of the realization. The
information we have is only the moments where the realization crosses by zero. Then,
the sample used is located at the midpoint between the two zero crossings. But its
magnitude is equal to the distance that exist between the two zero crossings where the
samples is. It means that there is not relation with the realization. As in this case the
conditional mean rule does not take into account the samples that belong to the reali-
zation, it is considered as a non-optimal algorithm.

When the zero crossings are obtained, and therefore the value of the additional
samples, we can use the conditional mean rule to calculate the reconstruction function
M(t) of the non-optimal algorithm by (1). But the use of the reconstruction error
function represented by (2) is not appropriate. Because of the non-optimal algorithm
does not depend on the value of the samples, the equation (2) does not reflect the real
reconstruction error. Besides, the error is the same that the obtained in the optimal
algorithm because both algorithms have and depend on the same parameters. Howev-
er, it is possible to define the quality of the reconstruction by a reconstruction total
error approximate function £%(t), which is directly related with the optimal recon-
struction algorithm for knowing the differences that exist in the reconstructions of the
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realization. This function is realized in two parts. The first is a special deterministic
part of the reconstruction error function generated by a relation between the recon-
struction function of the optimal algorithm #i(t) and the reconstruction function of
the non-optimal algorithm #i(t), that is [8-9]:

g4 (t)=[m(t)-m(t)] > . 3)

Clearly when i(t) = #i(t) this error is equal to zero. The second is a random part
of the reconstruction error. It is obtained on the basis of the reconstruction error func-
tion of the optimal algorithm G (t). Therefore, the reconstruction total error approxi-
mate function £2(t) is determined by [8-9]:

et (t)=e5(t)+ &%) . “)

Now the error depends on the value of the samples as the reconstruction. So, its
curves change drastically.

4 Comparison between both Reconstruction Algorithms

The random realization to reconstruct is obtained on the output of an one-stage RC
filter when it is driven by Gaussian white noise. It means, it is a Gaussian Markovian
realization. Its covariance function is:

K(z)=exp(- a‘r‘) . &)

Because we work with an unitary covariance time ., then @ = 1. As example we
consider a Gaussian Markovian realization composed by 61 samples in a time of 3
seconds, this is N = 61 and t = 3. The starting point is in zero, value of the mathe-
matical expectation. The samples are separated periodically by 0.05 seconds, it means
AT = 0.05. The first step is to saturate the realization for knowing exactly where the
zero crossings are located. In Fig. 1 are illustrated the realization to reconstruct and its
saturated form.

For starting the reconstruction of the realization, both algorithms consider as sam-
ples the points where the zero crossings happen. They also include an additional sam-
ple located inside each pair of zero crossings. The optimal algorithm places the sam-
ple at the midpoint between the two zero crossings, with a magnitude that is equal to
the magnitude of the realization at this point. That is, the samples are part of the reali-
zation. The non-optimal algorithm also places the sample at the midway between the
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two zero crossings. But the magnitude changes, now it is equal to the distance be-
tween the two zero crossings where the sample is located. It means, the samples do
not belong to the realization. This is the difference between both algorithms; the op-
timal algorithm considers more statistical parameters which are part of the realization
to reconstruct.

1.5F T T T T T .

Width
=
o
e
—— ]
|

AV LV
\/\/ |4

0 0.5 1 13 2 2.3 3

Time

Fig. 1. Gaussian Markovian realization with N = 61 and AT = 0.05, and its saturated form.

With the samples defined, we can perform the Sampling-Reconstruction Procedure
of the realization. Both algorithms are based on the conditional mean rule for making
the reconstruction function by (1). The difference takes place in the reconstruction
error function. The optimal algorithm continues using that rule for determining the
reconstruction error by (2). But the non-optimal algorithm associates the reconstruc-
tion functions of both algorithms for obtaining the reconstruction error, which is de-
fined by (4). The optimal case does not consider the value of the samples to get the
reconstruction error, the non-optimal case does. Although a feature of the Gaussian
process is that the magnitude of the reconstruction error does not depend on their
samples. In Fig. 2 are showed the reconstruction functions and the error reconstruc-
tion functions of both algorithms.

It is clear that the reconstruction curve originated by the optimal algorithm is better
that the reconstruction curve caused by the non-optimal algorithm. This is because the
first curve covers almost all the realization. The chaotic behavior of the realization
and the low number of samples used for making the reconstruction (N = 21), prevent
that the result could be better. Nevertheless, the curve in the optimal case is accepta-
ble. Its error varies in each interval of time as a result of the different periods of sepa-
ration between the samples. The maximum error is found in the middle of each inter-
val, while the minimum error exists in the sampling points. The reconstruction curve
of the non-optimal case does not cover a large part of the realization. One could even
think that the behavior is another. This causes a bigger error. In some instants of time
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it is very high. It is important to note that the error is not equal to zero at the sampling
points which are located between the zero crossings. When the difference between the
reconstruction curves grows in those intervals, the error curve of the non-optimal case
is further from a similar behavior to the error curve of the optimal case.
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Fig. 2. Reconstruction and reconstruction error functions of a Gaussian Markovian realization.

Following the comparison, we include the average reconstruction error curves.
They represent the area under the reconstruction error curves. They are obtained by:

Jpz (t)dt (6)
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where p?(t) represents the reconstruction error according to each algorithm. Obvious-
ly, the average error in the non-optimal algorithm is always bigger than the average
error in the optimal algorithm.

For improving the deficient results, it is possible to introduce a new parameter rep-
resented by k. The purpose of this constant is to multiply all samples used in the re-
construction function of the non-optimal algorithm for forming a new set of samples
X, T =k X [x(T,), x(T,), ..., x(Ty)]. The value of k is given according to the width of
the realization, and it can change until finding the best curve that represents the be-
havior of the realization. With k we could obtain a width in the reconstruction curve
similar to the width of the realization. In Fig. 3 are presented the reconstruction func-
tions and the reconstruction error functions of the non-optimal algorithm with differ-
ent values of k, it is also presented the functions of the optimal algorithm.
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Fig. 3. Reconstruction and reconstruction error functions of a Gaussian Markovian realization
with different values of k.
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If we include the parameter k, the curves of the non optimal algorithm significantly
improve. For example, when k = 1.5, the reconstruction curve maintains a close be-
havior to the realization. The new curve reaches to cover the realization much of the
time. In many instants it is a curve very similar to the curve of the optimal algorithm.
Hence, the reconstruction error is lower than when k = 1 in almost all the time. The
same thing happens when we consider k = 2. Although with this value, the recon-
struction error is higher in the time intervals where the separation between the sam-
ples is big. This is because the magnitude of the samples increases considerably. In
both cases the results are better than when we do not use the parameter k. This is
reflected in the average reconstruction error curves. In Fig. 4 there is a graph that
indicates how the average reconstruction error is if we consider different values of k.
It is also showed the relation with the optimal average reconstruction error.
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Fig. 4. Relation between the value of k and the magnitude of the average reconstruction error in
the non-optimal algorithm.

One notes that for this example, the smallest reconstruction error is obtained when
k = 1.5. But this may vary from one realization to another. Mainly because the char-
acteristics change, such as: the number of zero crossings and the separation between
them, the amplitude of the realization, the number of samples, and more. These cause
that the graph of Fig. 4 also changes. Nevertheless after several experiments with
many Gaussian realizations, we can conclude that using a value of k between 1.4 and
1.8, we get a similar reconstruction to the realization and therefore a smaller recon-
struction error.

It is important to mention that the sampling procedure in the optimal algorithm is
carried out at the transmitter. It means that on the output of the transmitter are sent
three samples (two samples located at the zero crossings and one sample located at
the midpoint between these zero crossings). But in the non-optimal algorithm the
sampling procedure is performed at the receiver. Due to the transmitter gives only the
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location of the zero crossings as information, then the receiver is responsible for esti-
mating the magnitude of the samples.

The figures demonstrate the difference between the reconstruction algorithms un-
der analysis. The precise estimates of the reconstruction error function in the optimal
algorithm give a family of curves that depends on several specific parameters of the
realization, as the value of the samples. While the non-optimal algorithm gives curves
that do not clearly describe the reality of the realization, because it considers samples
that do not have relation with the samples of the realization. This could have the ob-
jective of making an analysis and procedure simpler and faster, in order to save time
and space. But as a consequence, the reconstruction error is higher. In this way, we
need to introduce a new parameter for improving the reconstruction. Obviously, the
magnitude of the reconstruction error in the non-optimal algorithm is always higher in
any case. This is because it is composed by an alternative methodology, and it is an
approximation only. So it is a natural effect.

5 Conclusions

Two different reconstruction algorithms are analyzed to describe the Sampling-
Reconstruction Procedure of Gaussian Markovian realizations. Both principal charac-
teristics, reconstruction function and reconstruction error function, are obtained. The
algorithms are based on techniques that use the sampling zero crossings by clipping.
This is performed by saturating the realization through a clipper converter. Getting a
binary signal of the realization, which gives as information the moments when the
realization crosses by zero.

To make the reconstruction, the optimal algorithm adds an additional sample at the
midpoint between each pair of zero crossings, with a magnitude equal to the magni-
tude of the realization at this point. The non-optimal algorithm also put an extra sam-
ple at the midpoint between two zero crossings, but now the magnitude is equal to the
distance that exists between these zero crossings. The results show that the curves
obtained for the optimal algorithm are widely better in all the time. This is reflected in
a big difference between the reconstruction errors.

However, if we introduce a new parameter k that multiplies all samples of the re-
construction function in the non-optimal algorithm, we can get better curves that rep-
resent the behavior of the realization. Considering various realization, we conclude
that the best results are obtained when k has a value between 1.4 and 1.8.

Clearly, the methodology that uses the greatest number of statistical parameters of
the random realization, gives the correct reconstruction. This does not mean that the
non-optimal algorithms are incorrect. Simply, they must be declared as special cases,
which can be used depending on the application.
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