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Abstract. This document analyses a non-optimal algorithm for the Sampling-
Reconstruction Procedure of Gaussian realizations. The algorithm is based on 
the clipping. It means that it knows just the zero crossings in the realization. To 
finding out its effectiveness, it is compared with an optimal algorithm, which 
considers some samples of the realization located at strategic points. The result 
is that the non-optimal algorithm does not give a correct reconstruction. So it is 
necessary to include a new parameter within this methodology to improve the 
performance. However, the application has some disadvantages, mainly reflect-
ed in the reconstruction error. For all this, it is possible to conclude that the non-
optimal algorithms are just approximations to the optimal algorithms. The anal-
ysis is centered in the reconstruction of Markovian Gaussian realizations. 
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1 Introduction 

A fundamental problem in communication theory is to establish a statistical descrip-
tion that defines the reconstruction of the realizations that compose a random process 
through the multitude of their samples. Throughout history there have been several 
investigations to try to resolve it. Perhaps the most important work was done by A. 
Balakrishnan [1]. But in recent years one methodology has been studied extensively 
by lots of people, it is called conditional mean rule (cmr). This rule is capable of re-
constructing a random realization with the minimum error possible taking into ac-
count its main statistical characteristics. It gives to each random process its own opti-

mal reconstruction algorithm and optimal reconstruction error algorithm (see for 
example [2-5]). 

Despite having an optimal reconstruction algorithm, any realization of a random 
process has different ways to be reconstructed. That is, it can use an alternative meth-
odology to the right methodology according to the characteristics of each process. 
This parallel technique can (or not) have the same amount of statistical parameters 
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than the optimal technique uses to make the reconstruction. Although these parame-
ters may not belong to the random process. Because of this, many times the recon-
struction is not adequate. For this reason, it is called non optimal reconstruction algo-

rithm. Even the conditional mean rule can be considered as non-optimal algorithm if 
it does not consider the appropriate parameters. The purpose is to have a simpler 
methodology in its development and implementation, considering the range of allow-
able error and the processing time. 

In many cases, there is not enough information about the random process (or their 
realizations) to reconstruct it, specifically the value of the samples. Then, it is neces-
sary to saturate the realization by a clipper converter. Getting a binary signal of the 
realization, which gives as information the moments where it crosses by zero.  

The research is focus on the creation and analysis of the Sampling-Reconstruction 

Procedure (SRP) of Gaussian Markovian realizations having optimal and non-optimal 
algorithms. The methodologies are based on sampling methods using the zero cross-
ings by clipping.  

2 The Optimal Reconstruction Algorithm 

The Sampling-Reconstruction Procedure using the optimal algorithm is performed by 
the conditional mean rule. The mean idea of this methodology has been proposed in 
[2]. Firstly, we consider a random process  ( ) characterized by its multidimensional 
probability functions   [ (  )  (  )    (  )]. One realization of this process is 
discretized in time instants   {          }. Therefore, we form a set of samples 
     (  )  (  )    (  ) , where the number of samples   and their times of 
occurrence   are arbitrary. It means that the initial and central moment functions and 
their probability densities are modified. Now they are conditional and depend on the 
value of each sample  (  )  (  )    (  ).  

In this way, the conditional mean function  ̃( )  ⟨ ( )|   ⟩ is used as recon-
struction function. The quality of the reconstruction is evaluated by the conditional 
variance function  ̃( )  ⟨[ ( )   ̃( )] |   ⟩  or reconstruction error function. 
Both characteristics  ̃( ) and  ̃( ) can be found on the basis of the conditional mul-
tidimensional probability density function     ( ( )|   )  of the given process. 
With these parameters, it is possible to reconstruct a random realization and get the 
quality of it. It is clear that one cannot know exactly the sampled realization, but with 
this rule we obtain a statistical approach for each moment of time  . The rule also 
provides the minimum estimation reconstruction error for random realizations with an 
arbitrary probability density function. For all that, the conditional mean rule is called 
optimal algorithm. 

Considering that the realization to reconstruct is Gaussian, the conditional charac-
teristics are [6-7]: 
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where  ( ) and   ( ) are respectively the mathematical expectation and the variance 
of the initial process  ( ).  ( ) is the covariance function, and     represents the ele-
ments of the inverse covariance matrix. Assuming that the process is stationary, we 
consider  ( )    and   ( )   . This is the complete information about the process 
or realization given. According the properties of a Gaussian process, just the recon-
struction function depends on the value of the samples; the reconstruction error func-
tion does not.   

However, if we saturate the realization and apply the clipping operation, we have 
only the zero crossings as information. These zero crossings are considered samples. 
Under these conditions it is not possible to apply the conditional mean rule, because 
the result is zero. So we need to modify the methodology. This is accomplished by 
adding a sample between two zero crossings. With this proposal, we have the case 
where the sample is located at the midway between two zero crossings. Its magnitude 
is equal to the magnitude of the realization at this point.  

Once we have the samples, it is possible to apply the condition mean rule for mak-
ing the reconstruction and get a different result to zero. Then, the reconstruction func-
tion and the reconstruction error function are obtained by (1) and (2) respectively. 

3 The Non Optimal Reconstruction Algorithm 

The Sampling-Reconstruction Procedure using the non-optimal algorithm is also per-
formed by the conditional mean rule. The difference consists in the samples that it 
uses. Although in this methodology is also used an additional sample between two 
zero crossing, the value of this sample is not considered part of the realization. The 
information we have is only the moments where the realization crosses by zero. Then, 
the sample used is located at the midpoint between the two zero crossings. But its 
magnitude is equal to the distance that exist between the two zero crossings where the 
samples is. It means that there is not relation with the realization. As in this case the 
conditional mean rule does not take into account the samples that belong to the reali-
zation, it is considered as a non-optimal algorithm.   

When the zero crossings are obtained, and therefore the value of the additional 
samples, we can use the conditional mean rule to calculate the reconstruction function 
 ̂( ) of the non-optimal algorithm by (1). But the use of the reconstruction error 
function represented by (2) is not appropriate. Because of the non-optimal algorithm 
does not depend on the value of the samples, the equation (2) does not reflect the real 
reconstruction error. Besides, the error is the same that the obtained in the optimal 
algorithm because both algorithms have and depend on the same parameters. Howev-
er, it is possible to define the quality of the reconstruction by a reconstruction total 
error approximate function    ( ), which is directly related with the optimal recon-
struction algorithm for knowing the differences that exist in the reconstructions of the 
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realization. This function is realized in two parts. The first is a special deterministic 
part of the reconstruction error function generated by a relation between the recon-
struction function of the optimal algorithm  ̃( ) and the reconstruction function of 
the non-optimal algorithm   ̂( ), that is [8-9]: 
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Clearly when  ̃( )   ̂( ) this error is equal to zero. The second is a random part 

of the reconstruction error. It is obtained on the basis of the reconstruction error func-
tion of the optimal algorithm  ̃( ). Therefore, the reconstruction total error approxi-
mate function    ( ) is determined by [8-9]: 

 

      ttt dT
222 ~   . (4) 

 
Now the error depends on the value of the samples as the reconstruction. So, its 

curves change drastically.  

4 Comparison between both Reconstruction Algorithms 

 
The random realization to reconstruct is obtained on the output of an one-stage RC 

filter when it is driven by Gaussian white noise. It means, it is a Gaussian Markovian 
realization. Its covariance function is: 

 

      expK  . (5) 

 
Because we work with an unitary covariance time   , then    . As example we 

consider a Gaussian Markovian realization composed by 61 samples in a time of 3 
seconds, this is      and    . The starting point is in zero, value of the mathe-
matical expectation. The samples are separated periodically by 0.05 seconds, it means 
       . The first step is to saturate the realization for knowing exactly where the 
zero crossings are located. In Fig. 1 are illustrated the realization to reconstruct and its 
saturated form. 

For starting the reconstruction of the realization, both algorithms consider as sam-
ples the points where the zero crossings happen. They also include an additional sam-
ple located inside each pair of zero crossings. The optimal algorithm places the sam-
ple at the midpoint between the two zero crossings, with a magnitude that is equal to 
the magnitude of the realization at this point. That is, the samples are part of the reali-
zation. The non-optimal algorithm also places the sample at the midway between the 
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two zero crossings. But the magnitude changes, now it is equal to the distance be-
tween the two zero crossings where the sample is located. It means, the samples do 
not belong to the realization. This is the difference between both algorithms; the op-
timal algorithm considers more statistical parameters which are part of the realization 
to reconstruct. 

 

 
Fig. 1. Gaussian Markovian realization with      and        , and its saturated form. 

 
With the samples defined, we can perform the Sampling-Reconstruction Procedure 

of the realization. Both algorithms are based on the conditional mean rule for making 
the reconstruction function by (1). The difference takes place in the reconstruction 
error function. The optimal algorithm continues using that rule for determining the 
reconstruction error by (2). But the non-optimal algorithm associates the reconstruc-
tion functions of both algorithms for obtaining the reconstruction error, which is de-
fined by (4). The optimal case does not consider the value of the samples to get the 
reconstruction error, the non-optimal case does. Although a feature of the Gaussian 
process is that the magnitude of the reconstruction error does not depend on their 
samples. In Fig. 2 are showed the reconstruction functions and the error reconstruc-
tion functions of both algorithms. 

It is clear that the reconstruction curve originated by the optimal algorithm is better 
that the reconstruction curve caused by the non-optimal algorithm. This is because the 
first curve covers almost all the realization. The chaotic behavior of the realization 
and the low number of samples used for making the reconstruction (    ), prevent 
that the result could be better. Nevertheless, the curve in the optimal case is accepta-
ble. Its error varies in each interval of time as a result of the different periods of sepa-
ration between the samples. The maximum error is found in the middle of each inter-
val, while the minimum error exists in the sampling points. The reconstruction curve 
of the non-optimal case does not cover a large part of the realization. One could even 
think that the behavior is another. This causes a bigger error. In some instants of time 
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it is very high. It is important to note that the error is not equal to zero at the sampling 
points which are located between the zero crossings. When the difference between the 
reconstruction curves grows in those intervals, the error curve of the non-optimal case 
is further from a similar behavior to the error curve of the optimal case.  

 

 

 
Fig. 2. Reconstruction and reconstruction error functions of a Gaussian Markovian realization. 

 
Following the comparison, we include the average reconstruction error curves. 

They represent the area under the reconstruction error curves. They are obtained by: 
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where   ( ) represents the reconstruction error according to each algorithm. Obvious-
ly, the average error in the non-optimal algorithm is always bigger than the average 
error in the optimal algorithm. 

For improving the deficient results, it is possible to introduce a new parameter rep-
resented by  . The purpose of this constant is to multiply all samples used in the re-
construction function of the non-optimal algorithm for forming a new set of samples 
      [ (  )  (  )    (  )]. The value of   is given according to the width of 
the realization, and it can change until finding the best curve that represents the be-
havior of the realization. With   we could obtain a width in the reconstruction curve 
similar to the width of the realization. In Fig. 3 are presented the reconstruction func-
tions and the reconstruction error functions of the non-optimal algorithm with differ-
ent values of  , it is also presented the functions of the optimal algorithm.  

 

 

 
Fig. 3. Reconstruction and reconstruction error functions of a Gaussian Markovian realization 

with different values of  . 
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If we include the parameter  , the curves of the non optimal algorithm significantly 
improve. For example, when      , the reconstruction curve maintains a close be-
havior to the realization. The new curve reaches to cover the realization much of the 
time. In many instants it is a curve very similar to the curve of the optimal algorithm. 
Hence, the reconstruction error is lower than when     in almost all the time. The 
same thing happens when we consider    . Although with this value, the recon-
struction error is higher in the time intervals where the separation between the sam-
ples is big. This is because the magnitude of the samples increases considerably. In 
both cases the results are better than when we do not use the parameter  . This is 
reflected in the average reconstruction error curves. In Fig. 4 there is a graph that 
indicates how the average reconstruction error is if we consider different values of  . 
It is also showed the relation with the optimal average reconstruction error. 

 

 
Fig. 4. Relation between the value of   and the magnitude of the average reconstruction error in 

the non-optimal algorithm.  

 
One notes that for this example, the smallest reconstruction error is obtained when 

     . But this may vary from one realization to another. Mainly because the char-
acteristics change, such as: the number of zero crossings and the separation between 
them, the amplitude of the realization, the number of samples, and more. These cause 
that the graph of Fig. 4 also changes. Nevertheless after several experiments with 
many Gaussian realizations, we can conclude that using a value of   between 1.4 and 
1.8, we get a similar reconstruction to the realization and therefore a smaller recon-
struction error. 

It is important to mention that the sampling procedure in the optimal algorithm is 
carried out at the transmitter. It means that on the output of the transmitter are sent 
three samples (two samples located at the zero crossings and one sample located at 
the midpoint between these zero crossings). But in the non-optimal algorithm the 
sampling procedure is performed at the receiver. Due to the transmitter gives only the 
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location of the zero crossings as information, then the receiver is responsible for esti-
mating the magnitude of the samples.  

The figures demonstrate the difference between the reconstruction algorithms un-
der analysis. The precise estimates of the reconstruction error function in the optimal 
algorithm give a family of curves that depends on several specific parameters of the 
realization, as the value of the samples. While the non-optimal algorithm gives curves 
that do not clearly describe the reality of the realization, because it considers samples 
that do not have relation with the samples of the realization. This could have the ob-
jective of making an analysis and procedure simpler and faster, in order to save time 
and space. But as a consequence, the reconstruction error is higher. In this way, we 
need to introduce a new parameter for improving the reconstruction. Obviously, the 
magnitude of the reconstruction error in the non-optimal algorithm is always higher in 
any case. This is because it is composed by an alternative methodology, and it is an 
approximation only. So it is a natural effect. 

5 Conclusions 

Two different reconstruction algorithms are analyzed to describe the Sampling-
Reconstruction Procedure of Gaussian Markovian realizations. Both principal charac-
teristics, reconstruction function and reconstruction error function, are obtained. The 
algorithms are based on techniques that use the sampling zero crossings by clipping. 
This is performed by saturating the realization through a clipper converter. Getting a 
binary signal of the realization, which gives as information the moments when the 
realization crosses by zero. 

To make the reconstruction, the optimal algorithm adds an additional sample at the 
midpoint between each pair of zero crossings, with a magnitude equal to the magni-
tude of the realization at this point. The non-optimal algorithm also put an extra sam-
ple at the midpoint between two zero crossings, but now the magnitude is equal to the 
distance that exists between these zero crossings. The results show that the curves 
obtained for the optimal algorithm are widely better in all the time. This is reflected in 
a big difference between the reconstruction errors. 

However, if we introduce a new parameter   that multiplies all samples of the re-
construction function in the non-optimal algorithm, we can get better curves that rep-
resent the behavior of the realization. Considering various realization, we conclude 
that the best results are obtained when   has a value between 1.4 and 1.8. 

Clearly, the methodology that uses the greatest number of statistical parameters of 
the random realization, gives the correct reconstruction. This does not mean that the 
non-optimal algorithms are incorrect. Simply, they must be declared as special cases, 
which can be used depending on the application.  
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